Carbonic Anhydrase and CO2 Sensing during Cryptococcus neoformans Growth, Differentiation, and Virulence
نویسندگان
چکیده
The gas carbon dioxide (CO2) plays a critical role in microbial and mammalian respiration, photosynthesis in algae and plants, chemoreception in insects, and even global warming . However, how CO2 is transported, sensed, and metabolized by microorganisms is largely not understood. For instance, CO2 is known to induce production of polysaccharide capsule virulence determinants in pathogenic bacteria and fungi via unknown mechanisms . Therefore, we studied CO2 actions in growth, differentiation, and virulence of the basidiomycetous human fungal pathogen Cryptococcus neoformans. The CAN2 gene encoding beta-carbonic anhydrase in C. neoformans was found to be essential for growth in environmental ambient conditions but dispensable for in vivo proliferation and virulence at the high CO2 levels in the host. The can2Delta mutant in vitro growth defect is largely attributable to defective fatty acid synthesis. CO2 was found to inhibit cell-cell fusion but not filamentation during sexual reproduction. The can2 mutation restored early mating events in high CO2 but not later steps (fruiting body formation, sporulation), indicating a major role for carbonic anhydrase and CO2/HCO3- in this developmental cascade leading to the production of infectious spores. Our studies illustrate diverse roles of an ancient enzyme class in enabling environmental survival of a ubiquitous human pathogen.
منابع مشابه
Carbon Dioxide is a Powerful Inducer of Monokaryotic Hyphae and Spore Development in Cryptococcus gattii and Carbonic Anhydrase Activity is Dispensable in This Dimorphic Transition
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoform...
متن کاملFungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence
The ascomycete Candida albicans is the most common fungal pathogen in immunocompromised patients . Its ability to change morphology, from yeast to filamentous forms, in response to host environmental cues is important for virulence . Filamentation is mediated by second messengers such as cyclic adenosine 3',5'-monophosphate (cAMP) synthesized by adenylyl cyclase . The distantly related basidiom...
متن کاملComparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans.
Carbon dioxide (CO(2)) sensing and metabolism via carbonic anhydrases (CAs) play pivotal roles in survival and proliferation of pathogenic fungi infecting human hosts from natural environments due to the drastic difference in CO(2) levels. In Cryptococcus neoformans, which causes fatal fungal meningoencephalitis, the Can2 CA plays essential roles during both cellular growth in air and sexual di...
متن کاملQuorum Sensing-Mediated, Cell Density-Dependent Regulation of Growth and Virulence in Cryptococcus neoformans
UNLABELLED Quorum sensing (QS) is a cell density-dependent mechanism of communication between microorganisms, characterized by the release of signaling molecules that affect microbial metabolism and gene expression in a synchronized way. In this study, we investigated cell density-dependent behaviors mediated by conditioned medium (CM) in the pathogenic encapsulated fungus Cryptococcus neoforma...
متن کاملThe cAMP/Protein Kinase A Pathway and Virulence in Cryptococcus neoformans
The basidiomycete fungus Cryptococcus neoformans is an important pathogen of immunocompromised people. The ability of the fungus to sense its environment is critical for proliferation and the generation of infectious propagules, as well as for adaptation to the mammalian host during infection. The conserved cAMP/protein kinase A pathway makes an important contribution to sensing, as demonstrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005